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Introduction

In this PC session we will study a simplified stochastic model on price fluctuations, with a clear
physical idea in mind: a particle in a energy well subject to random fluctuations.
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Figure 1: Example of the probability distribution of the position of a particle in a quadratic potential,
F (x) = −2x.

The Langevin equation was proposed in 1908 as a way to model brownian motion. An interesting
aspect of it is that it gives a clear physical interpretation to some stochastic differential equations.
Consider then a particle of mass m in a viscous fluid with damping coefficient γ, and denote by x
its position1, then its dynamics are given by:

m
d2x

dt2
= −γdx

dt
+ F (x) + η(t), (1)

where F is a force field, η(t) a random force (think of shocks by the fluid) with a characteristic time
correlation τc � dt, modelled thus by 〈η(t)〉 = 0 and 〈η(t)η(t′)〉dt = 2Tδ(t− t′).

In the over-damped limit m
γ � 1 the ẍ term is negligible, and if the force F (x) = −V ′(x) is

conservative 2, the equation becomes:

γẋ = F (x) + η(t)

ẋ = −V ′(x) + η(t),
(2)

where we take γ = 1 for simplicity. This has the clear interpretation of a particle doing a ”stochastic
gradient descent” (going towards a local minimum of V but with fluctuations).

1We consider this 1-D case for simplicity. The generalization to 2, 3 or more dimensions is direct.
2Meaning that one can write it as minus the derivative of a potential, as done here.
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One can show that the stationary probability distribution of the particle’s position x is given by

p(x) ∝ exp

(
−V (x)

T

)
, (3)

that is the Boltzmann distribution for a temperature T . This simple example shall be used to develop
your intuition on a simple model of returns with feedback.

An important thing to know is the Arrhenius law: the time needed to go over a potential barrier
of height ∆V scales as

t∗ ∝ exp

(
∆V

T

)
. (4)

Part 1 : A simple example: the Mexican hat potential

Consider first the potential V (x) = a
4x

4 + b
2x

2, with a > 0.

1. Study the potential V . How many minima are there for b > 0? For b < 0? Give the positions
of the minima, their depth δ and sketch or plot the potential for b > 0 and b < 0.

2. From now on, we pick a = |b| /2 to fix the positions of the minima. We choose T = 1 where
δ is the depth of the potential, and discretize the dynamics as:

xt+dt = xt − V ′(xt)dt+ σξt
√

dt, (5)

where the {ξt} are gaussian iid variables.

3. Implement the dynamics to your liking3 with σ = 1, and run them with dt = 10−3 for 5 · 104

timesteps for different values of b (e.g. b ∈ {−10,−0.5, 2}). Plot xt for these different cases.
What do you notice ? How can you explain this ?

4. Suppose we are in the situation b < 0. What happens if we observe the dynamics for a short
(relative to b) timescale ? What is the name of this process ?

Part 2 : A model for returns: simplified case

We now consider returns rt, but we consider that the price of the asset is fixed - i.e. that the
returns are so small that they don’t change the price on short enough timescales. We introduce the
following model for their dynamics:

rt+dt − rt = −
(
κ(p− pF ) + (a− a′)rt + βr2t

)
dt+ σξt

√
dt (6)

1. Interpret the different terms of this equation. From now on we redefine α = a− a′. What is
the corresponding potential ? What do you get when β = 0? What happens depending on
the sign of α?

2. Pick pF = 0 and κ, p = 1 and plot it for (α > 0, β > 0) and (α < 0, β > 0). What do you
expect to see in the dynamics?

3. Do the same plots as previously but vary p from −1 to 1. What do you see ?

4. Implement the dynamics for α > 0 and β > 0, but try p = −1 and p = 1. Comment on the
observed results.

Part 3 : A model for returns: introducing feedback

We now introduce the fact that returns cause the price to vary, which in turn modifies the
potential. The evolution is now given by:

rt+dt − rt = −
(
κ(p− pF ) + (a− a′)rt + βr2t

)
dt+ σξt

√
dt

pt+dt − pt = rt · 10−2
(7)

3Two possibilities: write a function that takes a,b,dt,T and returns xt for a run of T timesteps, or write a class
with a self.timestep() method.
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1. In light of the previous question, what do you think is going to happen ?

2. Implement the dynamics and simulate them for (α > 0, β > 0). Explain your results.

3. Same question for α < 0 and β > 0.
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